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This article presents a numerical analysis of the laminar forced convection in a cylindrical 
duct for a thermodependent HerschelPBulkley fluid. Two boundary conditions are con- 
sidered: constant wall heat flux and constant wall temperature. Both fluid flow and heat 
transfer are studied. The governing equations are solved using the finite difference method 
with an implicit scheme. It is assumed that all fluid properties other than consistency K, 
are constant. The K-Trelation used is K = K. exp (- bT). The results obtained enable us to 
characterize completely the dynamic and thermal fields structure. For a practical use of the 
computed results, correlations for local Nusselt number and pressure gradient are proposed 
taking into account the modification of the wall shear rate induced by the rheological 
properties and the temperature-dependent character of the fluid. 
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Introduction 

In industries such as food. chemical, polymer, and pe- 
trochemical processing, non-Newtonian fluids are subjected to 
some thermal processing. Generally. the physical properties of 
these fluids are very sensitive to temperature. This has some 
effects on the velocity profile and the radial temperature profile. 
and therefore. on the pressure drop and the heat transfer 
rate. The case of Ostwald fluids. thermodependent by 
their consistency K, has been dealt with in many publications. 
However. few studies have been dedicated to the yield stress 
fluids. although they are frequently encountered in food and 
chemical industries. The present article intends to contribute 
to the study of the thermal convection in a pipe for 
a fluid whose rheologlcal behavior can be described 
by the Herschel-Bulkley law: r = T, + KIYI”. Bird et al. (19X3) 
have given a list of some materials that fall into this category 
of fluids (e.g.. coal:Newtonian liquid. applesauce. etc.). All the 
physical properties of the fluid are assumed to be constant. 
except for the consistency K. Two boundary conditions have 
been considered: constant wall temperature and constant 
wall heat flux. For each of these boundary conditions. 
the dynamic and thermal fields structure is analyzed, 
respectively, through the evolution of the velocity profiles and 
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that of the heat transfer coefficient. Correlations are presented 
that link the pressure gradient and the heat transfer coefficient 
to the dimensionless numbers relative to the flow, to the 
heating conditions, and to the rheological properties of the 
fluid. 

Literature review 

In the beginning. the theoretical studies dealing with 
heat transfer for non-Newtonian fluids were based on 
the assumption of temperature-independent physical prop- 
ertles. Pigford (1955) employed the LCvCque method, which had 
been successfully applied to nonisothermal flow of Newtonian 
fluids in cylindrical pipe. Lyche and Bird (1956) and Whiteman 
and Drake (1958) extended the second Graetz problem to 
power-law fluids in circular tube. and Hirai (1959) and Wisler 
and Schester (1959) presented the solution of the Graetz 
problem for Bingham fluids. Others who have considered the 
case of the simultaneously developing dynamic and thermal 
boundary layers are Chandrupatla and Sastri (1978) for a 
pseudoplastic fluid. Lin and Shah (1978) for a Herschel-Bulkley 
fluid, and Vradis et al. (1992) for a Bingham plastic 
fluid. However. most fluids encountered in the food 
industry have a high Prandtl number, the predictions 
of heat transfer parameters can be achieved by considering that 
the flow is established through the entire length of the duct 
without involving significant error. To take the variation of 
rheological properties into consideration, especially the 
consistency K, with temperature, Metzner et al. (1957) 
suggested, for an Ostwald fluid with a constant wall 
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temperature heating, an empirical correction factor similar to 
that used by Sieder and Tate: Nu = 1,16(~(/2X+)’ 3A1 “(K, 
KP) . ’ I4 for X’ < 0.02. The factor A is the ratio of the wall 
shear rate to the one that would be obtained for a Newtonian 
fluid at the same flow rate. It represents the modification of the 
wall shear rate attributable to the rheological properties of the 
fluid. The correction factor attributable to the variation of the 
consistency with respect to temperature is (Km/K,,)” 14. Another 
expression of this factor for the mean Nusselt number, was 
proposed by Kwant et al. (1973a and 1973b). It is given by 
1 + 0.271 Ln @ + 0.023 (Ln a)’ w*ith @ = (1 - r’h(T, - 
T,))l’“(x-:’ oJj-“h’r’-‘r”, where T’ is a function of n and h 
(5 - T,). In the case of constant flux heating for an Ostwald 
fluid, Mizushina et al. (1967) showed that the exponent of 
K,,iK, is a function of the power-law index n and proposed a 
correlation of the form: Nu = 1.41(n!2X+)’ 3A’ “(K,/K$‘.““I’-. 
for X+ <0.05. and Nu =4.36A’ -‘(K,:K,)’ 14r”“T. for X- 20.05. 

Joshi and Bergles (1980a and 198Ob). from a theoretical 
development and experimental tests. proposed another 
expression of the conststency ratio power in the thermal 
entrance region: 0.58-0.44 n. When the thermal regime is 
developed. the correction factor was given by a second order 
polynomial in (h4,,D:2i). where h characterizes the variation of 
the consistency with the temperature K = K,exp( - hT). 
From the numerical solution of the conservation equations and 
based on the test results of Scirocco et al. (1985). Kahinc et al. 
(1993) offered ,a more useful correction factor, given by 
(h~,D/2i.)0~1d’“(i 

In the case of the yield-stress fluids, Forest and 
Wilkinson (1973) have supplied diagrams givmg the evolution 
of the Nusselt number as a function of the Graetz number with 
dimensionless groups specifying the temperature dependence 
effect and the rheological properties and the wall conditions as 
parameters, The authors gave neither any correlation nor any 
results concerning the pressure drop. Moreover. the range of 
the rheological parameters considered is rather limited. Nai’mi 
et al. (1990) have presented the effect of the dimension of the 
plug core on the corrective factor. They mentioned, 
experimentally. in the case of an annular geometry, that an 
increase of the plug core width leads to a decrease of the 
thermodependency effects. The last point has not been studied 

from a quantitative point of view. This bibliographic review 
shows the necessity of a supplementary study for temperature- 
dependent yield stress fluids. which we have performed 
numerically. 

Basic equations 

The fluid is incompressible and thermodependent by 
its consistency K. The viscous energy dissipation is 
considered. and the axial diffusion is neglected in com- 
parison with the radial diffusion. At the entrance of the heated 
region (2 = 0), the flow is fully developed, and the fluid 
temperature is constant and uniform. The coordinate system, 
the axial and radial components of the velocity, are illustrated 
in Figure I. The following dimensionless parameters are 
used : 

: 
d 

{‘U, R pli,,L 
‘Jo = ; Y= 

&I PO 

where J’ = R - r. and Y = ~1” - ty. The apparent viscosity of 
the fluid calculated at the local temperature T is pO, and p0 
corresponds to the apparent viscosity calculated at the wall 
shear rate for a fully developed velocity profile and at the inlet 
temperature T<~. 

The problem is governed by the following equations: 

Contim4rt~~ quution: 
T 

( (tJL:)+ ( 
iZ iI 

(qV)=O (1) 

iZ 
+ L’ ;; = - (2) 

Notation 

UP relative radius of the plug core (nonsheared zone) 
up = R,,,R 

h K = K, exp( - hT) 
CP specific heat, J. kg- ’ C ’ 
Br Brinkman number Br = i+,L:,‘,[i.(T,, ~ 7j,)] 
D diameter of pipe, m 
K fluid consistency. Pa. s” 
m reverse of the power-laws index 

power-law index of the fluid n 
Nu local Nusselt number 
P pressure, Pa 
P dimensionless pressure 

k 
radial coordinate, m 
radius of pipe, m 

R> outer radius of the plug core. m 
u axial velocity, m;s 
C’ dimensionless axial velocity 
u, average velocity of the flow. m s 
T, inlet temperature. C 

1‘ radial velocity, mjs 
v dimensionless radial velocity 
X’ Cameron number X’ = 2i$pCpljdD2 
!‘ radial coordinate ,V = R - r (m) 
: axial coordinate, m 

Grrrl, 

A* wail shear rate compared to that of a Newtonian fluid 
‘I dtmensionless radial position 
I’ viscosity, Pa s 
P fluid density, kg. m - ’ 
T .< yield stress. Pa 
4,J wall heat flux density, W rn-’ 

SUh.Wt@.\ 

C’ inlet 
m bulk 
New T\iewtoman 
P wall 
cP constant physical properties 
VP v#ariable physical properties 
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OL-- - --es-- --) 7 
Figure 1 System of coordinates 

Rheological studies performed by Nouar et al. (1994) 
and Na’imi et al. (1990) on a mode1 fuid that could 
represent a large range of liquid foods show, that these 
fluids are thermodependent essentially by their consistency K 
within a range of temperatures lt&60 C. The relation K~ T 
adopted is K = K, exp 1 -hT). The temperature dependency 
of the yield stress TV and the power law, index II is weak 
compared with the temperature dependency of the consistency 
K and. thus, can be ignored. According to Forrest and 
Wilkinson (1973). the yield stress is caused by the fact that I( 
mainly depends on a mechanical locking of the tluid. which is 
essentially temperature independent. This is a possible explana- 
tion of the weak temperature dependency of the yields 
stress. Nevertheless. for higher temperature, T, may be sensrttve 
to temperature. 

The boundary conditions for I’. L: and 0 arc as 
follows: 

U(v/, z = 0) = u,,; H(fl. z = 0) = 0, 16al 

The fully developed axial velocity and the inlet temperature are 
U,, and B,,. respectively. 

?ci if1 
K (‘I = 0. Z) = il? (q = 0. 2) = V(ty = 0. Z) = 0 

Ihb) 

iti 
U(Y=O,Z)= V(Y=O.Z)=O; 

iY 
(I’ = 0, Z) 

or O( Y = 0. Z) = on 

(6~1 

Where $p and O,, are, respectively, the wall heat density Rux 
and the dimensionless wall temperature. 

The established axial velocity profile I/‘,, is given 

by the following relation: 

et- 1 

u,, = if ‘I 
up_< I1 

C’) ‘lo 

and c;,., = ’ if 01 r? Iup 
(!I ‘lo 

wthcre up = ~\,,‘t~,I = R,/R; R, is the outer radius of the plug core. 

and 

The relative dimension of the plug core up can be calculated 
from the following relation: 5, up = with T/, = T, + K 

SP 

After some mampulations, up is, thus, the solution of the 
following equation: 

I 1 ~ up)” + ’ 
zz 

‘lP 

Numerical solution 

For the purpose of computation. it is not necessary 
to distinguish a state of shear (I > 0) and a state of 
absolute rigidity (f = 0). It is assumed that at very 
low shear rates. the fluid behaves as a Newtonian 
fluid with a very high viscosity, and that above a 
critical shear rate (7,) a transition in behavior occurs; 
namely. yielding. After yielding, the fluid takes an apparent 
viscostty /L. defined by the following: 

I(,, = T,ij;i~-’ + q;;“-’ 

This bivsiscosity model is a convenient method of modeling 
materials with yield stress, which was adopted by several 
authors (O’Donovan and Tanner 1984). The analysis showed 
that for tiu;ir) I 10m3 ss’, the results are quite insensitive to 
the cut-off value. In the present work, a value of 
(iwir), = IO-” s ’ is used. 

Equations l-5, as well as the associated boundary 
conditions, were solved by means of an extension of 
the linearized implicit finite difference of Bodoia and 
Osterle ( 1960). The axial convective term is approximated by 
the upstream difference and the radial convective and 
drffusional terms by the central difference. The integral 
representation of the continuity equation is determined by the 
trapezoidal rule of numerical integration. After some 
modifications, the finite difference equations form a tridiagonal 
matrix equation that can be solved efficiently by the 
Thomas algorithm. 

Results and discussion 

To discern the effect of the non-Newtonian behavior 
from that attributable to the temperature-dependent con- 
sistency on pressure drop and heat transfer, a numerical study 
in the case of constant physical properties is performed. 
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Temperature-independent consistency K 

Assuming constant physical properties. the analysis of the 
thermal convection for a HerschelLBulkley fluid enables us to 
determine the correction factor Nu,,,,,? Nuhea. that in- 
corporates the modification of the wall shear rate by the 
rheological properties. For power-law fluids, Mizushina et al. 
(1967) have suggested to take the non-Newtonian behavior into 
consideration on the heat transfer by multiplying the 
Newtonian Nusselt number by A’ ‘. where A is the 
ratio of the wall shear rate compared to that which 
would have been obtained for a Newtonian fluid at 
the same flow rate. Joshi and Bergles (1980a) have 
confirmed this non-Newtonian correctron for both entrance 
and fully developed regions. with a maximum deviation of 7% 
obtained for II = 0.25. This has led us to examine. for the 
HerschelLBulkley fluids. the possibility of a correction by A*’ ‘. 
where A* has the same meaning as A. and is given by the 
following: 

A* = 1 r?r + I 
: Nu ,,,, ‘,, = A*’ ‘. NLI,,,, 171 

410 1 - rip, 

OL 
0 01 02 03 04 05 06 07 08 0.9 1 

r/R 

where Nu,,,. is the Newtonian Nussclt number. 
We have obsetved for II < 0.25, and UP,, > 0.7 deviations 

betwzeen the Nusselt number calculated from Equation 7 and 
that evaluated numerically. For example. for II = 0.25. and 
“PC = 0.8. a dev>iation of 16% is obtained at X + = 1OV’. A 
correction can be anticipated by using the asymptotic Nussclt 
number Nu, (the expression of Nu , IS too long and is given 
in the Appendix). NuiNu,,, = Nu, 4.36. However. this time. 
deviations appear for the low values of X +. .A systematic study 
was performed for II ranging from 0.1 to I and ccp,, from 0 to 
0.9. It indicates that the non-Newtoman correction A*’ ’ or 
Nu, can be used in the entire duct, if II ranges from 0.3 to I. 
and LIP,, is less than 0.7. This conclusion is valid in the cast 
of constant wall temperature as well as constant wall 
heat flux. The pressure drop can be characterized by 
the pressure gradient obtained in rsothcrmal situation 
and for a fully developed axial vclocrty protilc: ( - dp dr),. 

hgure 2 Evolutton of the axial velocity profile along the heating 
zone, case of constant flux heating: n = 0,5; ap, = 0,38; /I = 15 (0 
IS X+ = 0; 0 IS X’ = 4.5 10~‘; 0 is XT = 2.7 1 Om4: A is 
X’ = 6 7 10 4; V is X’ = 1.3 10m3; n is X’ = 2.7 10-3; and 
AISX-=9810 ‘) 

061 

Temperature-dependent consistency K 

04 

1 

02 
t 

Constant flux heating. 

Axial velocity profile. It is well known that along a 
heated wall and under the etfcct of the decrease of 
the consistency I< close t o this wall. the wall shear 
rate increases. and the centerline velocity decreases because of 
the flow conservation. The relative radius of the plug cot-c 
increases until it nearly fills up the whole section of the pipe. 
The asymptotic profile of axial velocity is almost flat and the 
reduced axial centerline velocity is then close to I. 

0’ Y 
0 01 02 0.3 04 05 0.6 07 08 0.9 1 

r/R 

F/gure 3 Evolution of the axial velocity profile along the heating 
zone. case of constant flux heating: n = 0,5; ap, = 0; [j = 15 (0 is 
x+=0; 3 is X’ = 4.5 loo-‘; 0 IS X’ = 2.7 1 Om4; A IS 

X-=6710 “, V is X’ = 1.3 1 Om3; n is X’ = 2.7 10w3; and 
A is X’ = 9.8 10 ‘) 

As an example, Figure 2 gives the evolution of the axial 
velocity profiles along the heating zone for UY~,. = 0.38: M = 0.5: 
lyb,DQi = 15 and for various axial posttrons. The axial 
velocity profiles intersect at the same point .I4 until the axral 
position where the plug core reaches this point. Beyond thus 
point, this property is no longer confirmed. On the 
contrary, for Ostwald fluids, the velocity profiles intersect at 
the same point on the whole length of the heating zone. as 
shown in Figure 3. This intersection point separates the zone 
where there is an increase of the axial vclocrty from the zone 
where there is a decrease of the velocitvr. 

heating zone. As an example, Figure 4 shows. in semilogar- 
ithmic coordinates, the evolution of CT,,, as a function of the 
Cameron number X+ , for II = 0.5; @,Dj2i, denoted by [j = 15 
and for eight values of the relative size of the plug core up= going 
from 0 to 0.69. The “irregularities” observed at the 
establishmg of the dynamic regime correspond to the axial 
position wzhere the plug core reaches the intersection point of 
the axial velocity profiles. We can note a discontinuity for U,,,. 
when up,. tends toward zero. 

A more convenient way to character& the modifications of 
the axial velocity profile is to represent the evolution of the 
reduced axial centerline velocity L:,,,,, = U (I! = 0. Z) along the 

In opposition to the Forest and Wilkinson indication (1973) 
it IS possible to determine a pseudodynamic entrance length 
xc> + as the distance from the inlet section, for which the 
centerline velocity is equal to 1.01 of the limiting value. 
Figure 5 shows the evolution of the pseudodynamic 
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x+ 

Figure 4 Evolutron of U,,,,, along the heatrng zone. case of 
constant flux heating. n = 0 5 and /i = 15 (T is ap, = 0; A IS 
ap, = 0.04; n IS ap, = 0 18, l is ap, = 0.29: 0 IS ap, = 0.38; V 
is ap, = 0.52; A is ap, = 0.62; and 0 IS ap, = 0 69) 
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0’ 
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Figure 5 Pseudodynamrc entrance length Xe’ versus the 
dimension of the plug core ap,, case of constant flux heatrng’ 
p = 15 (0 is n = I, * IS n = 0 5: and + IS n = 0.25) 

entrance length Xr’ for /i = I5 and for three values of the 
power-law index t7 = I, 0.5 and 0.3. The numertcal results 
show that: (I) X: decreases when f/p,, increases and tends 
toward zero when up,, tends toward 1; (2) a dtscontinuity 
appears at the abscissa point up,, = 0, as Xu’ seems to increase 
when up<, tends towards zero; vvhereas. for tip,, = 0. the value 
of Xc+ exists and is equal to 0.013; (3) when the power-law 
index decreases, the fluidification becomes more important, and 
development of the dynamic tield approaches very fast; (4) as 
for the effect of the dimensionless grouping [I’ is concerned. it 
favors the developemnt of the thermal and dynamic fields. Once 
more. for a yield stress fluid Xc- increases when /I tends towjard 
zero. 

Pressure drop. In an Isothermal situation, the pressure 
gradient (dpld&, is given by: t - dp d:),.,, = 7~,,(~p,Rj. In the 
presence of heating and in order to underline the effect of the 

thermodependency, it is agreed to consider a ratio of (dpldz) 
to the gradient of isothermal pressure. This ratio is also equal 
to the ratio Cj’* of the friction coefficient to the isothermal 
one. As formerly, Cf* depends on II, upe, fl, and X+. In 
Figure 6. - log Cf* is plotted against Cameron number X+ 
for eight values of the relativre radius of the plug core upF. 
Because the viscosity is decreasing with temperature. C’* is 
lower than 1. Moreover, for each curve, three parts can be 
distinguished in the evolution of Cf* versus Xc. Firstly. a low 
evolution with X+. close to the inlet section because of the 
progressive mcrease of the wall temperature, then an 
exponential decrease of Cf‘*. and last, a nearly constant value 
corresponding to the development of the dynamic field. When 
the dynamic regime is established. -dp/dz is equal to 
3/R. and Cj’* = ap,. Figure 6 also shows that the 
more the plug core dimension is important, the less 
the thermodependence effect is marked. The effect of b, of 
course, contributes to a decrease of the pressure drop. The 
power-law index has practically no effect when it varies between 
0.5 and I. 

It is useful to present the results as correlations. 
In the thermal entrance region, a simple idea consists in writing 
that Cl’* is equal to what would be obtained for an Ostwald 
fluid vvhen up, = 0 and is equal to I when ap, = 1. If we 
anticipate a linear evolution as a function of up, between these 
two limits, we will be able to write the following: 

cr * ,op. 50, = u*,,, =“,[I - ap,J + up&, 
with (8) 
Cl * ,,Jp, z “, = cxp[ - ?,jp(x +) n.h4] 

However. we can observe that the relation (8) can 
also be applied to large values of X+, where the 
dynamic field becomes developed. and C’* = ap,. Last, we 
have checked that the maximal deviation between the values 
given by the correlation (8) and the numerical results is of 5% 
for 0 < UP,, 5 0.7: 0.3 I 17 5 1 and 3.75 I 0 I 37.5. 

The relatron (8) gives also the evolution of ap(X+), because 
C/‘* = trpJup(X ‘). If we consider the position of Xf measured 

Figure 6 Evolution of the reduced pressure gradient along the 
heatrng zone, case of constant flux heating- n = 0.5; /i = 15 (v is 
ap, = 0; A is ap, = 0.04; n is ap, = 0.18; 0 is ap, = 0.29; V is 
ap, = 0.38; n IS ap, = 0.52; 3 is ap, = 0.62; and 0 IS 
ap, = 0.69) 
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from the inlet section for which, for cxamplc up(X+) = 0.9, we 
find: 

x+= -1 ,og&!f- 
1 

LO 64 

2.58 9(1 - up,) 
This expression indicates that the establishment length of the 
dynamic regime tends toward the infinity when up, or fl tend 
toward zero. as mentioned in the previous paragraph. 

Heat transfer. The flow structure depends upon the size of 
the plug core, on the power-law index, and on the dimensionless 
grouping fi, Therefore, it is the same for the exchange rate. 
Figure 7 illustrates the development of the temperature 
profile along the pipe for /I = 15. n = 0.5. and np6. = 0.38. The 
evolution of the thermal boundary layer 6(X’) and of ap(X’) 
have also been represented. The axial position where the 
thermal boundary layers meets the plug core has been 
identified. The corresponding axial velocity profile has been 
brought to this position. The thickness 6(X-) is defined as the 
distance from the wall for which f!,, - O(b) = 0.99(f), - 0,). 

As far as the heat transfer rate IS concerned, Figure 8 gives 
the evolution of the Nusselt number against the Cameron 
number for /I’ = 15, n = 0.5, and up,, = 0.38 and for six values 
of p: 3.75; 7.5; 11.25: 1s: 22.5: and 37.5. Three areas can be 
distinguished. In the first area, the Nusselt number decreases 
from the inlet section onward because of the increase of 
the thickness of the thermal boundary layer. The second area 
is an area of transition, where for some values of up‘, and /I (see 
the curve relative to /I = 3.75). the Nusselt number decreases 
until it reaches a minimum. It then increases because of the 
increase of the wall shear rate. The third area corresponds to 
the development of the thermal regime where the Nusselt 
number tends asymptotically toward a limiting value equal to 
8. This latter value is related to the fact that the asymptotic 
velocity profile is flat. In the nonthermodependent case, the 
asymptotic Nusselt number Nu,. depends upon up‘,. 
In Figure 8 also. the classical result relative to the 
increase of the Nusselt number with the dimension- 
less grouping /I can be found. The effect of up, IS 
characterized. on the one hand. by a modification of 

T-T, 

0 0 0 0 
0 p D/h 

0.3 

i Llll 

1 u I Ud 
0.2 

I 

0 J 
0 0.001 O.CXI2 O.CO3 0.004 0.005 O.CQ6 0.007 0.006 0.009 0.01 

Xf 

Figure 7 Structure of the thermal field, case of constant flux 
heatrng: n=0.5; ap,=0.38; /j=15 (1) X+=0.9 lOma, (2) 
X+=310-3;(3)X+=4.810~3:and(4)X’=810 3 

Figure 8a Evolution of the local Nusselt number along the 
heatrng zone, case of constant flux heating: n = 0.5; ap, = 0.38 (0 
IS /I = 3 75: 0 is /r = 7.50; a is p = 11.25; V is p = 15.0; 0 is 
p = 22.50; and n IS /I = 37.50) 

Figure 86 Comparison of the numerical results wrth the 
expenmental data 

the axial velocity profile, and on the other hand, by a 
decrease of the effects of thermodependency. The more ap, is 
important. the less the thermodependency effect is significant. 

If we take as a basis an extension of Leveque method for the 
yield stress fluids. it is possible to write in the thermal entrance 
zone Nu - Q~k’~x”-‘:” (- means proportional); QP is a 
dimensionless wall shear rate. Combining non-Newtonian and 
consistency variation corrections. we can write: 

The ratio of the nonisothermal to isothermal wall velocity 
gradient of the yield stress fluid is A’. It accounts for the 
modification of the wall shear rate with the variation of the 
consistency K with temperature. 

In the thermal entrance zone, the Nusselt number 
can be written as follows: 

A” 3 = P” 
and 

r = (0.13 - 0.085 n). (1 - up,)’ [2.3 - l.3(1 - up,)] 
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In setting up a correlation. we take care to introduce 
dimensionless groupings to make their use more convenient. 
Thus, in the former equation. the grouping h$,,D/2i. intervenes 
rather than the ratio of the consistencies K,/K,. The expresston 
of A’ shows once more that the effects of thermodependency 
decrease in the presence of a yield stress. This result 
has been qualitatively mentioned by Na’imi et al. (1990). 

When the thermal field is established. the Nusselt 
number is practically equal to 8. Following Churchill 
and Usagi method (1972). a unique correlation on the 
whole length of the pipe is searched as follows: 

The optimal value of : is the one that enables us 
to approach the numerical results as close as possible. 
We find ? = 3. Last. the former equation can be written as 
follows: 

for 0.02 I ap, I 0.7: 0.3 < n I 1.0, and 3.75 < /j 5 37.5. 
The maximum deviation of the heat transfer coefficient 

calculated from Equation 9 and the numerical results is 15%. 
This maximum is obtained at X’ = IO s and at Xi = 5 IO j. 
Figure 8b shows a comparison between the numerical 
correlation and experimental results of Nouar et al. (1994). For 
the majority of the points, the difference is less than 15%. 

Heating at constant wall temperature. 

Axial velocity profile. Far downstream. the temperature 
becomes uniform across the tube at a value approaching 7;. 
and the axial velocity profile is then fully developed. If the fluid 
had had no yield stress, the velocity profile would have reverted 
back to its isothermal value when the temperature became 
uniform across the tube. However, the existence of a yield stress 
and the change in the vvall shear stress changes the dimenston 
of the plug core, so the asymptotic axial velocity protile is not 
the same as that at the inlet to the heated section. 

The redistribution of the flow takes place m two stages, 

(1) In the first stage. the wall shear rate increases, and the 
centerline velocity decreases. Nevertheless. the shape of the 
axial velocity profiles is di&rcnt from that observed in the 
case of a constant flux heating. A high increase of the wall 
shear rate occurs. because the tube wall is subjected to a 
sudden increase in temperature at the start of the heated 
section. 

(2) In the second stage. the axial velocity profile that is Hattened 
tends toward a developed profile. This second stage is 
characterized by a decrease of the wall shear rate and an 
increase of the centerline velocity. 

As with constant flux heating. it is more convenient to 
represent the evolution of the axial velocity profiles through 
the evolution of U,,, along the heating zone. The dimensionless 
parameters that rule the problem are: the power-law index II: 
the dimensionless number. fi’ = h(T, - T,); and, of course. the 
relative width of the plug core up,, at the inlet of the heating 
zone. In Figure 9. the evolution of C;,,, has been represented 
according to X+ for n = 0.5; /I’ = 1. and for various values of 
the size of the plug core. The minimum of each curve 
corresponds to the higher limit of the First stage in the 
redistribution of the flow. In this case. it is possible to define 
another pseudodynamic entrance length Xr:. representing 
the extension of the first stage. If we analyze the effect of the 
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various parameters n, np,, and [j on Xc;, we observe that: (1) 
the extension of the first stage is as consequent as upr is low, 
when ap, = 0, no discontinuity is observed: (2) a decrease of 
the power-law index leads to a smaller extension of the first 
stage; and (3) the more the dimensionless number B is large, 
the more Xc: is low. In the second stage, the higher up, is, the 
lower the evolution of If,,,,, following X+ is 

Pressure drop. As previously, we consider the evolution of 
the ratio (dpidz) on (dp/d~)~,, written as C’* along the heated 
section, which depends upon n, up,, and p. In Figure IO. 
-log Cf‘* is plotted against the Cameron number X+ for eight 
v*alues of the relative width of the plug core ap, going from 0 
to 0.69. As with constant flux heating. the increase of up, cuts 
down the effects of thermodependency. As for the effect of /i’, 

1 ",,,,I ",,,,I ",,.,I ".,,.' ",,,, 
lo6 1o-5 10.' 1o.3 1o-2 10-l 

X+ 

fjgure 9 Evolutton of U,,,,, along the heating zone, case of 
constant wall temperature heating, n = 0.5, and /Y = 1 (V is 
an, = 0: A is ap, = 0.04; n is an, = 0 18; 0 IS ap, = 0.29; V is 
ap, = 0.38; n ts ap, = 0.52; 0 is ap, = 0.62; and 0 is 
ap, = 0.69) 

//- .:;... 
IO' 

,,, 
i 

Figure 70 Evolution of the reduced pressure gradient along the 
heattng zone, case of constant wall temperature heating: n = 0.5; 
11’ = 1 (V is ap, = 0; A ts ap, = 0.04; n is ap, = 0.18; 0 is 
ap, = 0.29; V is ap, = 0.38; n is ap, = 0.52; 0 is ap, = 0.62; 
and 0 is ap, = 0.69) 
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it is clear that Cf* decreases when /j increases because of the 
decrease of the viscosity. 

It is always interesting to have a correlation that allows the 
calculation of the pressure drop according to the various 
parameters that govern the problem. To use the Churchill 
and Usagi (1972) method, the asymptotic behavior has 
been searched for close to the inlet and further down- 
stream. The inlet area corresponds to the first stage in the 
redistribution of the flow: cf‘s = cxp( -Y). with ‘I’ = (I - 
ap,).(0.42nz - 0.07~ + 1.97)’ r.X+“.“+O IA”. When the dy- 
namic condition is developed, Cf * = CJ “: and IS given by the 
following: 

cf: = f!!- if up,, # 0; cr.‘: = exp[ - h( T, ~ 7Jl 
OP. 

if upe, = 0 

The application of Churchill and Usage (I 972) method leads to 
an expression of Cf* as follows: 

c-l’* = [(Cf*, )B + (c-f’“: )yl 8: 0.3 I f1 F 1: 0 5 ap,, $ 0.7 

and 0.5 I [I’ I 2x+ 2 10 -1 

This expression has been confirmed in the different ranges of 
variation of the various dimensionless parameters mentioned 
below with a maximal deviation of 10% when compared to the 
numerical results. 

Heat traansfer. The structure of the thermal field can be 
illustrated by Figure I I. where some temperature profiles 
have been drawn as well as the evolution of the thermal 
boundary layer and the width of the plug core. The evolution of 
the Nusselt number along the heating zone for II = 0.5 
QPe = 0.38 for four values of /Y: 0.5: I; 1.5 and 2 is 
given in Figure 12. Again. we notice an increase of the Nusselt 
number attributable to the thermodependency. The variation 
of up by the rheological properties modifies the wall shear rate 
and, therefore. the heat transfer ratio. This modification IS 

integrated in the nonthermodependent case by the correction 
factor A*’ 3. 

Last, a unique correlation has been sought for the entlre 

u 

0 0 0 0 Tp - Te 

, 

0  LI I I 
0  0.001 o.w2 0.003 0004 0005 0006 0007 0.008 0009 001 

x+ 

Figure 77 An example of the structure of the thermal field, case 
of constant wall temperature heating: n = 0.5; /j’ = 1.; ap, = 0 38 
(1) X+= 10 3; (2) X+ =3 10m3; (3) X*=5 10m3; and (4) 
X+ = 6.9 10m3 

loo. 
lo* 1 o.5 10.' 1o.3 ID' 10.' 

X+ 

Figure 12 Evolution of the Nusselt number along the heating 
zone, case of constant wall temperature heating: n = 0.5; 
ap, = 0.38 (0 is /j’ = 0.5; 0 is 8’ = 1 ; n is /i’ = 1.5; and V is 
p’ = 2) 

length of the pipe according to Churchill and Usagi (1972) 
method : 

with A” .’ = exp(O.l/n)r(0.9 - 0.090) + (0.13 + O.O8n/Y)l.,~(ap,), 
and /‘(up,) = I -O.O?up, - O.lupi; if up, I 0.7; n 2 0.3, and in 
the case of nonviscous dissipation. the asymptotic Nusselt 
number is Nu, = (Nu~~,,,)~(A*‘;“), = 3.66(A*‘j3),. 

The maximum deviation between the Nusselt number 
calculated from correlation (lo), and the numerical results is 
20%. The heat transfer with constant wall temperature is more 
dificult to correlate than the case of constant wall heat flux 
because of a sudden increase of temperature in the entrance 
section. 

At X ’ = 0.1. the variation of Nusselt number c’ersus the 
Cameron number does not present an asymptotic behavior. It 
is particularly visible on the curve corresponding to j’ = 0.5 
(Tp - 7;,). As a matter of fact, far downstream, the conventional 
local Nusselt number continues to decrease, and for a certain 
axial position, it becomes infinite with negative value. Further 
downstream, the local Nusselt number attains an asymptotic 
value that is higher than that for Br = 0. This evolution is 
because of the viscous dissipation. According to Lawal and 
MuJumdar (1992), the fluid temperature rises because of heat 
transfer from the wall and viscous heating. This latter 
mechanism of heating depends upon the shear rate, which is 
highest in the wall region. Hence; while T, is still greater than 
T,,, an axial location is reached where the thermal gradient 
becomes zero, so that the Nusselt number also becomes zero. 
Thereafter, there is a heat flux reversal, with the fluid heating 
the wall. The bulk temperature continues to rise until a location 
is reached where it becomes equal to the wall temperature. At 
this point, the local Nusselt number distribution exhibits 
a singularity. 

In our study. the Brinkman number defined by Br = 
/+,C’j I[;.( T, - T,)] varies between 0 and - 0.01. For a constant 
wall heat density rate, the effect of viscous dissipation is not 
significant for the range of Brinkman numbers considered. For 
a constant wall temperature, the effect of viscous dissipation 
on the pressure gradient is weak. Concerning the Nusselt 
number. the effect appears at large values of X+: X+ 2 0.01. 

230 Int. J. Heat and Fluid Flow, Vol. 16, No. 3, June 1995 



Convection tn Herschel-Bulkley fluids: C. Nouar et al. 

Conclusion 

A numerical analysis of the thermal convection for a 
HerschelLBulkley fluid in a cylindrrcal pipe has been 
performed. Two boundary conditions have been considered. 
constant wall heat flux and constant wall temperature. The 
equations of conservation have been approximated by a 
finite-difference method with a fully implicit scheme. All the 
physical properties of the fluid are assumed to be constant 
except for the consistency K. whose variation with the 
temperature is given by K = K, exp ( - hT). 

Constant wall flux heating 

The thermal gradients at the wall induce a fluiditication of the 
product. An increase of the wall shear rate balanced by a 
decrease of the velocity on the axis of the pipe is observed. The 
axial velocity profile evolves until it reaches an almost flat 
profile. This redistribution of the flow gives rise to a radial 
velocity directed from the center of the flow toward the heated 
wall. After analyzing the evolution of the flow structure in the 
entire heating zone, it has been possible to interpret the 
variation of the pressure gradient and of the heat transfer rate 
as a function of the rheological parameters and of the 
dimensionless grouping 1. The following correlations relative 
to the pressure gradient and to the local Nusselt number 
depending upon various dimensionless parameters have been 
offered: 

Cf* (up,.fO, = c/*,,,,=o,[l - UP‘.1 + C’P,. 
with 

cl‘* (ap, = 0) = exp[ - 2.58( XI - ) () ha’] 

for 0 I ccp<, I 0.7: 0.3 5 n 5 I. crnd 3.75 I [j I 37.5. where 

cf* = 
(dp:‘d$,, 

and 
(dpid:),, 

/i = h&D Z/. 

and 

i 

A’A* 1 3 
Nu = 8 1 + 8.61.10~” ,+ 

x 1 
for 0.02 I up,, 20.7; 0.3 I- n I 1.0. and 3.75 5 /j 5 37.5 with 
A":3 = B": ct = [O.l3 -O.O85n].[l -up,,]. [2.3 ~ l.3(1 -up<,)]; 
A* = (1/4tu)(m + l)/(l - up,); to = I - 2[( I - c~p,.)~:‘(m + 3) + 
ap,( I - up,)/(m + 2)]; 111 = 1 ‘M. 

Constant wall temperature heating 

Because the asymptotic profile of temperature is flat T(r) = r,. 
the redistribution of the flow takes place in two stages. In the 
first stage, the wall shear rate increases, and the centerline 
velocity decreases. At the end of the first stage, the axial velocity 
profile is flattened. In the second stage. the “flattened” profile 
tends asymptotically toward an established isothermal profile, 
calculated at the wall temperature. As with constant flux 
heating, the pressure gradient and the heat transfer ratio are 
analyzed according to the evolution of the flow structure. 
Finally, the following correlations are presented for the 
pressure gradient and the heat transfer rate. 

cf’* = [(Cf*,)X + (~/‘y]’ B : 0.3 < 12 < 1; 0 < UP<, 2 0.7 
and 0.5 < p’ 5 2 

Cf: = exp( - Y) 
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with 

Y’ = (I - up<,)~(0.42n2 - 0.07~ + 1.97)~~.X+“~17+o.13n; 

Cf : = “!Y if ap, # 0; 
UP, 

Cf’: = exp[ - h( r, - T,)] if ap, = 0 

and 

with 

A" ' = exp(0. 

and 

l/n)[(0.9 - 0.09n) + (0.13 + O.O8np)] f‘(ap,) 

f(ql‘>) = 1 - o.o2ap, - O.lap,5 

if up, 5 0.7; II 2 0.3. and without viscous dissipation, the 
asymptotic Nusselt number is Nu, = (Nu~,,),(A*'~~), = 
3.66(A *' 3),. 
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Appendix 

The asymptotic Nusselt number in the case of independent 
physical properties and under the boundary condition of 
constant wall heat density flux is as follows: 

Nu, = 
210’ 

0.25 + 4G(1 - UJI,)-~~-~ 

c = ( 1 - L’P,J Zm+ 5(m + 4 + up,) 

’ (m + ‘)(m + 3)(m + 4)(m + 5) 

+ (1 - q,) 2m+s(2m + 5 + ape) (1 - up&,)2m+6 
‘(m + mm + 3)(2m + 5) (m + 2)2(m + 3)2 

(1 ~ up‘,)2m+4 (m* + Zup,m + 7m + 2apt + 6ap, + 12) 

(m + 2)(m + 3)(m + 4)(m + 5) 

1 Lm-s + cc (m + 2)2(m + 3)’ i-0 
:,+,I(-uP,,‘(l - “P:m+h-l)] 

‘,n2”’ + 6 

+ 
.  c 

~~ log up,, 
(m + 2)‘lm + 3)* 
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